Withdrawal of life-sustaining therapy for perceived neurological prognosis and outcomes after out-of-hospital cardiac arrest

Jonathan Elmer, MD, MS
Assistant Professor
Departments of Emergency Medicine and Critical Care Medicine
University of Pittsburgh
Co-authors

• Cesar Torres
• Tom P. Aufderheide
• Michael A. Austin
• Clifton W. Callaway
• Eyal Golan
• Heather Herren
• Jamie Jasti
• Peter J. Kudenchuk
• Damon C. Scales
• Dion Stub
• Derek K. Richardson
• Dana M. Zive

and the Resuscitation Outcomes Consortium investigators
Disclosures

• **ROC** – NHLBI/NINDS, US Army Medical Research and Material Command, Institute of Circulatory and Respiratory Health, Defence Research and Development Canada and the Heart, Stroke Foundation of Canada and the American Heart Association

• **Dr. Elmer** – NHLBI 5K12HL109068; NINDS L30NS089025

• **Mr. Torres** – NCI T32CA09168

• **Dr. Scales** – Fellowship in Translational Health Research from the Physicians Services Incorporated Foundation

• **Dr. Stub** – NHMRC/NHF early career fellowship (#1090302/100516)
Background

- Brain injury drives poor outcomes after resuscitation from out-of-hospital cardiac arrest (OHCA)
- Withdrawal of life-sustaining therapy for perceived poor neurological prognosis (WLST-N) is the most common proximate cause of death

Background

- Accurate neurological prognostication is challenging after cardiac arrest
 - Guidelines recommend delaying neurological prognostication and WLST-N at least 72h after ROSC

- WLST-N before 72h (WLST-N<72) may contribute to preventable mortality and self-fulfilling prophecies

Circulation. 2015;132(suppl 2):S465–S482
Aims

• Quantify incidence and timing of WLST-N
 – H_a: WLST-N<72 is common

• Estimate effect of WLST-N<72 on outcomes
 – H_a: Predicted survival for patients exposed to WLST-N<72 is greater than nil
Methods

• Secondary analysis of ROC PRIMED trial
 – 2x2 factorial RCT:
 Early vs delayed rhythm analysis
 Impedance threshold device
 – No difference in outcome for either comparison
Cohort selection

• ≥18 years of age with EMS-treated OHCA
 – Excluded trauma, exsanguination, pregnant, prisoner

• Achieved ROSC

• Transported to participating hospital

• Survived >60 min after hospital arrival
Categorizing outcomes

• Trial coordinators recorded date and proximate cause of death for all subjects:
 – **Unstable** (ongoing life-support impossible or futile)
 – **Brain death**
 – **Non-neurological considerations** (preexisting illnesses, advanced directives, surrogate representation of patient’s wishes)
 – **WLST-N**

• Outcomes: Survival, favorable outcome (mRS ≤3)
Statistical methods

• Divided subjects into two cohorts
 – **Exposed** to WLST-N<72
 – **Not exposed** (including those with WLST-N after 72h)
• WLST-N is uniformly fatal
• Two parallel methods to estimate impact of exposure on outcome
 – **Propensity score**: \(P(\text{exposure to WLST-N<72}|\text{covariates}) \)
 \(\rightarrow \) 1:1 propensity matched cohorts + measure outcomes in unexposed matched cohort
 – **Adjusted logistic regression** models built using unexposed cohort, then applied to exposed cohort
• Extrapolated nationally using epidemiological data
Results

• 4,265 subjects met inclusion criteria
• 22% (919, 33% of non-survivors) exposed to WLST-N<72
 – Exposed: 0% survival, 0% favorable outcomes
 – Unexposed: 45% survival, 33% favorable outcome
Propensity match

- Multiple differences between exposed and unexposed cohorts; none persisted after matching
 - Age, sex, race/ethnicity
 - 9 major medical comorbidities
 - Residential status
 - Shockable rhythm
 - CPR intervals
 - Witnessed arrest
 - STEMI
 - TTM/hypothermia
 - Cardiac catheterization w/in 24h
Predicted outcomes for cohort exposed to WLST-N <72

<table>
<thead>
<tr>
<th></th>
<th>Predicted outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Survival</td>
<td></td>
</tr>
<tr>
<td>Propensity:</td>
<td>25% (22 – 28%)</td>
</tr>
<tr>
<td>Logistic:</td>
<td>26% (23 – 100%)</td>
</tr>
<tr>
<td>Favorable outcome</td>
<td></td>
</tr>
<tr>
<td>Propensity:</td>
<td>16% (14 – 19%)</td>
</tr>
<tr>
<td>Logistic:</td>
<td>16% (14 – 100%)</td>
</tr>
</tbody>
</table>
National implications

- 22% (9,185) exposed to WLST-N<72h
- 25% (41,750) survive to admission
- 167,000 EMS-treated OHCA annually

Predicted outcomes:

<table>
<thead>
<tr>
<th>Survival</th>
<th>Predicted outcomes</th>
<th>Lives annually</th>
<th>% improved</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propensity: 25% (22 – 28%)</td>
<td>2,296 to 2,388</td>
<td>5.5 to 5.7%</td>
<td></td>
</tr>
<tr>
<td>Logistic: 26% (23 – 100%)</td>
<td>(2,021 to 9,185)</td>
<td>(4.8 to 100%)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Favorable outcome</th>
<th>Predicted outcomes</th>
<th>Lives annually</th>
<th>% improved</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propensity: 16% (14 – 19%)</td>
<td>1,470</td>
<td>3.5%</td>
<td></td>
</tr>
<tr>
<td>Logistic: 16% (14 – 100%)</td>
<td>(1,286 to 9,185)</td>
<td>(3.1 to 100%)</td>
<td></td>
</tr>
</tbody>
</table>
Limitations

• Association, not causality
• Unmeasured confounders
• Potential imprecision in adjudication of cause of death
• RCT subjects may receive different/better care
Conclusions

• After OHCA, WLST-N<72 is common

• Reducing WLST-N<72 may be an opportunity to decreased mortality and improve neurological outcomes after OHCA
Questions?

Thank you