Syndesome-Based Dressings for Enhanced Wound Healing in Diabetic Ulcers

Subhamoy Das, Gunjan Singh, Matthew E. Martinez, Catherine S. Wright, Patricia E. Martin, Andrew K. Dunn, Aaron B. Baker.

Department of Biomedical Engineering
The University of Texas at Austin
Subhamoy Das, Ph.D.

Syndesome-Based Dressings for Enhanced Wound Healing in Diabetic Ulcers

FINANCIAL DISCLOSURE:
No relevant financial relationship exists.

UNLABELED/UNAPPROVED USES DISCLOSURE:
None.
Wounds – The Clinical Problem

- $50B spent per year – wound care in USA
- 6.5 million chronic wound patients
- Increasing prevalence of PVD and Diabetes with an ageing population

- Diabetes – 347 million patients (2011)
- PVD – 202 million patients (2010)

Global Wound Care Market (2013)

Growth Factors
3.4%

- Bioengineered Skin: 2.9%
- Negative Pressure Wound Therapy: 14.5%
- Antimicrobial Dressings: 11%
- Hydro-colloids: 6.5%
- Foam Dressings: 7.9%
- Traditional Adhesive Bandages: 26.8%
- Traditional Gauze Bandages: 10.5%
- Non-Adherent Bandages: 8.3%
- Film Dressings: 3.5%
An appealing strategy for treating cutaneous wounds is to use growth factor proteins or genes to stimulate the native tissue to repair itself.
Growth Factor Therapy Trials

- Topical FGF-2 for healing diabetic foot ulcers – no benefit over placebo. ¹
- Topical EGF for venous ulcers – non significant effects. ²
- Becaplermin (PDGF-BB) or Regranex™ gel – only growth factor approved by the Food and Drug Administration (FDA) for neuropathic diabetic foot ulcers. ³

Overall Motivation

Problem
Negligible long-term results in human clinical trials

Appealing Strategy
Growth factor proteins or genes

Non-healing Wounds
50 billion $’s spent

Overall Goal
1. To overcome resistance to growth factor therapy
2. To test therapeutic in a clinically relevant mouse model
Ob/Ob Mouse Model

- Deficient for hormone Leptin
- Characteristics:
 - Obesity
 - Hyperphagia
 - Hyperglycemia
 - Glucose Intolerance
 - Insulin Resistance
- High fat diet for 10 weeks
Does Ob/Ob Mouse Exhibit Resistance to Growth Factor Therapy?
Ob/Ob Mice Exhibit Growth Factor Resistance

Growth Factor Interactions

INITIATION of angiogenesis
- Detachment of pericytes
- Degradation of basement membrane

Hif1-a
VEGF
Ang-2

NEOVESSEL FORMATION
- Endothelial cell proliferation and migration
- Pericyte proliferation

VEGFs
FGFs

ADAPTATION to tissue needs
- Regression of neovessels due to lack of flow or presence of growth factors

Ang-2

MATURATION
- Attachment of pericytes
- Deposition of basement membrane

PDGFs
Ang-1

Growth Factor

Co-receptor
Receptor

Co-receptor
Syndecan-4

Syndecan-4 in Mouse Tissues

MUSCLE

- **HFD:** High Fat Diet (10 weeks)
- **NCD:** Normal Chow Diet (10 weeks)

HEART

- **HFD:** High Fat Diet (10 weeks)

Norm. Protein Expression

Strain:
- WT
- Ob/Ob

Diet:
- NCD
- HFD

p < 0.05

Reduction of Syndecan-4 in Human Tissue

Non-Diabetic

Diabetic
Reduction of Syndecan-4 in Human Tissue

![Image of tissue sections for Non-Diabetic and Diabetic groups]

- **Non-Diabetic**
 - Image of tissue section showing Syndecan-4 expression

- **Diabetic**
 - Image of tissue section showing reduced Syndecan-4 expression

![Bar chart showing Syndecan-4 Positive Cells (%)]

- **Y-axis:** Syndecan-4 Positive Cells (%)
- **X-axis:** Non-Diabetic / Diabetic

- Bar height indicates higher expression in Non-Diabetic compared to Diabetic samples.

Statistical significance indicated by asterisk:
Growth Factor Resistance

Syndecan-4

FGFR-1

FGF-2

Syndecan-4
Can We Overcome This Resistance to Growth Factor Therapy?

Syndesomes will be referred as **S4PL** from here on.
Characterization of Syndesomes

![Graph showing size distribution of S4PL particles](image)

- Intensity (%) vs. Size (nm)
- S4PL

![Electron microscopy image](image)

Scale: 400 nm
S4PL+FGF-2 Enhance Angiogenesis in a Subcutaneous Implantation

S4PL+FGF-2 Enhance Angiogenesis in Ischemic Tissues

Day 0

Day 7

Day 14

Poster Number 493
Can Syndesomes Enhance Wound Healing?

Syndesomes

Syndesome/Alginate Wound Dressing

Improved Wound Healing in Chronic Wounds
ECIS - Electric Cell-substrate Impedance Sensing
S4PL Enhances *In Vitro* Migration

NORMAL KERATINOCYTES

DIABETIC KERATINOCYTES
S4PL Enhances *In Vitro* Migration

NORMAL FIBROBLASTS

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Δ Resistance (k-ohm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Treatment</td>
<td>0</td>
</tr>
<tr>
<td>FGF-2</td>
<td>0.15</td>
</tr>
<tr>
<td>1:1000 S4PL</td>
<td>0.1</td>
</tr>
<tr>
<td>1:500 S4PL</td>
<td>0.05</td>
</tr>
<tr>
<td>1:250 S4PL + FGF-2</td>
<td>0.15</td>
</tr>
</tbody>
</table>

DIABETIC FIBROBLASTS

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Δ Resistance (k-ohm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Treatment</td>
<td>0</td>
</tr>
<tr>
<td>FGF-2</td>
<td>0.1</td>
</tr>
<tr>
<td>1:1000 S4PL</td>
<td>0.15</td>
</tr>
<tr>
<td>1:500 S4PL</td>
<td>0.1</td>
</tr>
<tr>
<td>1:250 S4PL + FGF-2</td>
<td>0.15</td>
</tr>
</tbody>
</table>
4% Alginate Disk Preparation
Mouse Excisional Wound Model Procedure
S4PL + FGF-2 Enhance Wound Closure
S4PL + FGF-2 Enhances Wound Closure

- **Control**
- **S4PL**
- **FGF-2**
- **S4PL + FGF-2**

Open Wound Area (%)

- **Day 0**
- **Day 7**
- **Day 14**

Note: The diagram shows the percentage of open wound area over time for different treatment groups. The bars represent the mean ± standard error. The asterisk () indicates a statistically significant difference between groups at Day 14.*
Movat’s Pentachrome Staining of the Wound Sections
S4PL + FGF-2 Increases Epidermis Length

W: Wound bed F: Fat layer
S4PL + FGF-2 Increases Epidermis Length

* significant w.r.t. all other groups. p<0.05
S4PL + FGF-2 Enhance Wound Perfusion
S4PL + FGF-2 Increases Vasculature in the Wound Bed

* significant w.r.t. all groups, #significant w.r.t control and S4PL groups. p<0.05
S4PL Decreases CD86^+ Macrophages

* significant w.r.t. FGF. p<0.05
S4PL Increases CD163⁺ Macrophages

* significant w.r.t. FGF. p<0.05
S4PL + FGF-2 Reduces Macrophage Count in the Wound
S4PL + FGF-2 Increases CD206⁺ M2 Macrophages
S4PL + FGF-2 Enhances IL-4 Expression at Day 6
S4PL Enhances IL-6 Expression at Day 2

[Graph showing IL-6 concentration (pg/ml/mg of tissue) over Days 2 and 6 for different conditions: Control, FGF-2, S4PL, S4PL + FGF-2.]
S4PL+FGF-2 also Increases other Cytokines at Day 6
Summary

Day 14

- FGF-2
- VEGF-A
- PDGF-

S4PL + FGF-2

FGF-2

S4PL

Alginate

Day 0

- Control
- Ischemic

Day 14

- Control
- FGF-2
- S4PL
- S4PL + FGF-2

CD163 Positive Cells (%)

Control

FGF-2

S4PL

S4PL + FGF-2

*
Acknowledgements

PI: Dr. Aaron Baker

Contact: subhamoy.das@utexas.edu
S4PL Enhances *In Vitro* Migration

NORMAL KERATINOCYTES

DIABETIC KERATINOCYTES
Excisional Wound Model

HUMANS
- Wound heals by formation of granulation tissue and re-epithelialization.
- Skin is tethered to subcutaneous tissues, hence no contraction.

RODENTS
- Wound heals primarily by contraction and some regeneration.
- Skin is mobile, hence more contraction.

In PAD patients and diabetics, the process of wound healing is substantially impaired, leading to chronic wounds.
