IMPproved Reduction of Outcomes: Vytorin Efficacy International Trial

A Multicenter, Double-Blind, Randomized Study to Establish the Clinical Benefit and Safety of Vytorin (Ezetimibe/Simvastatin Tablet) vs Simvastatin Monotherapy in High-Risk Subjects Presenting With Acute Coronary Syndrome
Trial Leadership

Study Chairmen: Eugene Braunwald and Robert Califf

TIMI Study Group:
- Christopher Cannon
- Amy McCagg
- Sabina Murphy
- Robert Giugliano
- Christina Pelland
- Erin Bohula May

DCRI:
- Michael Blazing
- Jennifer White
- Curtis Campbell
- Craig Reist
- Yuliya Lokhnygina
- Cathy Martz

Merck:
- Thomas Musliner
- Ann Kilian
- Paul DeLucca
- Andrew Tershakovec
- Rona Harmelin-Kadouri
- Steve Bird

DSMB Chair: Scott Grundy

CEC Chair: Stephen Wiviott
National Lead Investigators and Steering Committee (1158 sites, 39 Countries)

Enrique Gurfinkel¹
Argentina (331)

Philip Aylward
Andrew Tonkin*
Australia (116)

Gerald Maurer
Germany (935)

Frans Van de Werf
Belgium (249)

Jose C. Nicolau
Brazil (423)

Pierre Theroux
Paul Armstrong*
Jacques Genest*
Canada (1106)

Ramon Cobalan
Chile (152)

Daniel Isaza
Colombia (568)

Jindrich Spinar
Czech Rep (371)

Peer Grande²
Denmark (576)

Juri Voitk
Estonia (10)

Antero Kesaniemi
Finland (341)

Jean-Pierre Bassand
Michel Franier*
France (268)

Harald Darius
Germany (935)

Matayas Keltai
Hungary (116)

Atul Mathur
Sanjay Mittal
Krishna Reddy
India (259)

Basil Lewis
Israel (589)

Gaetano DeFerrari
Italy (593)

Ton Oude Ophuis
J. Wouter Jukema*
Netherlands (1191)

Harvey White
New Zealand (164)

Terje Pedersen
Norway (295)

Frank Britto
Peru (66)

Witold Ruzyillo
Poland (589)

Manuel Carrageta
Portugal (102)

Ki-Bae Seung
S. Korea (118)

Tibor Duris
Slovakia (121)

Anthony Dalby
S. Africa (186)

Jose Lopez-Sendon
Spain (551)

Mikael Dellborg
Sweden (480)

Francois Mach
Switzerland (263)

Sema Guneri
Turkey (50)

Alexander Parkhomenko
Ukraine (159)

Adrian Brady
United Kingdom (318)

Michael Blazing
Christopher Cannon
Christie Ballantyne*
James de Lemos*
Neal Kleiman*
Darren McGuire*
United States (5869)

Singapore (75), Malaysia (59), Hong Kong (58) Ecuador (45), Taiwan (46)

*Steering Comm Member, ¹ Deceased, ² 2005–2013
Lowering LDL cholesterol (LDL-C) has been a mainstay of cardiovascular prevention.

- Evidence mostly from statin trials which show reduction in morbidity and mortality
 - High-dose statins further reduce non-fatal CV events

- To date, no lipid-modifying therapy added to statins has been demonstrated to provide a clinical benefit
 - Fibrates, niacin, CETP inhibitors

- Recent ACC/AHA Guidelines have emphasized use of statin therapy

- Despite current therapies, patients remain at high risk
Ezetimibe: Background

➢ Ezetimibe inhibits Niemann-Pick C1-like 1 (NPC1L1) protein
 – located primarily on the epithelial brush border of the GI tract
 – resulting in reduced cholesterol absorption

➢ When added to statin, produces ~20% further reduction in LDL-C

➢ Two recent human genetic analyses have correlated polymorphisms in NPC1L1 with lower levels of LDL-C and lower risk of CV events*

*MI Genetics Consortium Investigators NEJM 2014; online Nov 12; Ference BA et al AHA 2014
Goals

IMPROVE-IT: First large trial evaluating clinical efficacy of combination EZ/Simva vs. simvastatin (i.e., the addition of ezetimibe to statin therapy):

- Does lowering LDL-C with the non-statin agent ezetimibe reduce cardiac events?
- “Is (Even) Lower (Even) Better?” (estimated mean LDL-C ~50 vs. 65mg/dL)
- Safety of ezetimibe

Cannon CP AHJ 2008;156:826-32; Califf RM NEJM 2009;361:712-7; Blazing MA AHJ 2014;168:205-12
Patient Population

Inclusion Criteria:
- Hospitalization for STEMI, NSTEMI/UA < 10 days
- Age ≥ 50 years, and ≥ 1 high-risk feature:
 - New ST chg, + troponin, DM, prior MI, PAD, cerebrovasc, prior CABG > 3 years, multivessel CAD
- LDL-C 50-125 mg/dL (50–100 mg/dL if prior lipid-lowering Rx)

Major Exclusion Criteria:
- CABG for treatment of qualifying ACS
- Current statin Rx more potent than simva 40mg
- Creat Cl < 30mL/min, active liver disease
Patients stabilized post ACS ≤ 10 days:
LDL-C 50–125*mg/dL (or 50–100**mg/dL if prior lipid-lowering Rx)

Standard Medical & Interventional Therapy

Simvastatin 40 mg

Ezetimibe / Simvastatin 10 / 40 mg

Follow-up Visit Day 30, every 4 months

Duration: Minimum 2 ½-year follow-up (at least 5250 events)

Primary Endpoint: CV death, MI, hospital admission for UA, coronary revascularization (≥ 30 days after randomization), or stroke

Cannon CP AHJ 2008;156:826-32; Califf RM NEJM 2009;361:712-7; Blazing MA AHJ 2014;168:205-12
Study Metrics

<table>
<thead>
<tr>
<th>Metric</th>
<th>Simva (N=9077)</th>
<th>EZ/Simva (N=9067)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uptitration to Simva 80mg, %</td>
<td>27</td>
<td>6</td>
</tr>
<tr>
<td>Premature study drug D/C, %</td>
<td>42</td>
<td>42</td>
</tr>
<tr>
<td>Median follow-up, yrs</td>
<td>6.0</td>
<td>5.9</td>
</tr>
<tr>
<td>Withdraw consent w/o vital status, %/yr</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Lost to follow-up, %/yr</td>
<td>0.10</td>
<td>0.09</td>
</tr>
<tr>
<td>Follow up for primary endpoint, %</td>
<td>91</td>
<td>91</td>
</tr>
<tr>
<td>Follow up for survival, %</td>
<td>97</td>
<td>97</td>
</tr>
</tbody>
</table>

- Total primary endpoint events = 5314
- Total patient-years clinical follow-up = 97,822
- Total patient-years follow-up for survival = 104,135
Baseline Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Simvastatin (N=9077)</th>
<th>EZ/Simva (N=9067)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline Characteristics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>Female</td>
<td>24</td>
<td>25</td>
</tr>
<tr>
<td>Diabetes</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>MI prior to index ACS</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>STEMI / NSTEMI / UA</td>
<td>29 / 47 / 24</td>
<td>29 / 47 / 24</td>
</tr>
<tr>
<td>Days post ACS to rand (IQR)</td>
<td>5 (3, 8)</td>
<td>5 (3, 8)</td>
</tr>
<tr>
<td>Cath / PCI for ACS event</td>
<td>88 / 70</td>
<td>88 / 70</td>
</tr>
<tr>
<td>Prior lipid Rx</td>
<td>35</td>
<td>36</td>
</tr>
<tr>
<td>LDL-C at ACS event (mg/dL, IQR)</td>
<td>95 (79, 110)</td>
<td>95 (79, 110)</td>
</tr>
</tbody>
</table>
LDL-C and Lipid Changes

<table>
<thead>
<tr>
<th></th>
<th>1 Yr Mean</th>
<th>LDL-C</th>
<th>TC</th>
<th>TG</th>
<th>HDL</th>
<th>hsCRP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simva</td>
<td>69.9</td>
<td>145.1</td>
<td>137.1</td>
<td>48.1</td>
<td>3.8</td>
<td></td>
</tr>
<tr>
<td>EZ/Simva</td>
<td>53.2</td>
<td>125.8</td>
<td>120.4</td>
<td>48.7</td>
<td>3.3</td>
<td></td>
</tr>
<tr>
<td>Δ in mg/dL</td>
<td>-16.7</td>
<td>-19.3</td>
<td>-16.7</td>
<td>+0.6</td>
<td>-0.5</td>
<td></td>
</tr>
</tbody>
</table>

Median Time avg 69.5 vs. 53.7 mg/dL

Number at risk:

| EZ/Simva | 8990 | 8889 | 8230 | 7701 | 7264 | 6864 | 6583 | 6256 | 5734 | 5354 | 4508 | 3484 | 2608 | 1078 |
| Simva | 9009 | 8921 | 8306 | 7843 | 7289 | 6939 | 6607 | 6192 | 5684 | 5267 | 4395 | 3387 | 2569 | 1068 |
Primary Endpoint — ITT

Cardiovascular death, MI, documented unstable angina requiring rehospitalization, coronary revascularization (≥30 days), or stroke

HR 0.936 CI (0.887, 0.988)
p=0.016

Simva — 34.7%
2742 events

EZ/Simva — 32.7%
2572 events

NNT= 50

7-year event rates
Primary and 3 Prespecified Secondary Endpoints — ITT

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Simva* EZ/Simva* p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary</td>
<td>0.936</td>
</tr>
<tr>
<td>Secondary #1</td>
<td>0.948</td>
</tr>
<tr>
<td>Secondary #2</td>
<td>0.912</td>
</tr>
<tr>
<td>Secondary #3</td>
<td>0.945</td>
</tr>
</tbody>
</table>

UA, documented unstable angina requiring rehospitalization; Cor Revasc, coronary revascularization (≥30 days after randomization); All D, all-cause death; CHD, coronary heart disease death; All Revasc, coronary and non-coronary revascularization (≥30 days)
Individual Cardiovascular Endpoints and CVD/MI/Stroke

HR	**Simva**	**EZ/Simva**	**p-value**
All-cause death | 0.99 | 15.3 | 15.4 | 0.782
CVD | 1.00 | 6.8 | 6.9 | 0.997
CHD | 0.96 | 5.8 | 5.7 | 0.499
MI | 0.87 | 14.8 | 13.1 | 0.002
Stroke | 0.86 | 4.8 | 4.2 | 0.052
Ischemic stroke | 0.79 | 4.1 | 3.4 | 0.008
Cor revasc ≥ 30d | 0.95 | 23.4 | 21.8 | 0.107
UA | 1.06 | 1.9 | 2.1 | 0.618
CVD/MI/stroke | 0.90 | 22.2 | 20.4 | 0.003

*7-year event rates (%)

Ezetimibe/Simva Better | **Simva Better**
CV Death, Non-fatal MI, or Non-fatal Stroke

7-year event rates

Event Rate (%) vs. Time since randomization (years)

- **Simva — 22.2%**
 - 1704 events
 - HR 0.90 CI (0.84, 0.97)
 - p=0.003
 - NNT= 56

- **EZ/Simva — 20.4%**
 - 1544 events
Major Pre-specified Subgroups

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>Simva†</th>
<th>EZ/Simva†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>34.9</td>
<td>33.3</td>
</tr>
<tr>
<td>Female</td>
<td>34.0</td>
<td>31.0</td>
</tr>
<tr>
<td>Age < 65 years</td>
<td>30.8</td>
<td>29.9</td>
</tr>
<tr>
<td>Age ≥ 65 years</td>
<td>39.9</td>
<td>36.4</td>
</tr>
<tr>
<td>No diabetes</td>
<td>30.8</td>
<td>30.2</td>
</tr>
<tr>
<td>Diabetes</td>
<td>45.5</td>
<td>40.0</td>
</tr>
<tr>
<td>Prior LLT</td>
<td>43.4</td>
<td>40.7</td>
</tr>
<tr>
<td>No prior LLT</td>
<td>30.0</td>
<td>28.6</td>
</tr>
<tr>
<td>LDL-C > 95 mg/dl</td>
<td>31.2</td>
<td>29.6</td>
</tr>
<tr>
<td>LDL-C ≤ 95 mg/dl</td>
<td>38.4</td>
<td>36.0</td>
</tr>
</tbody>
</table>

*p-interaction = 0.023, otherwise > 0.05
IMPROVE-IT vs. CTT: Ezetimibe vs. Statin Benefit

CTT Collaboration.
Lancet 2005; 366:1267-78;

Proportional reduction in event rate (SE)

Reduction in LDL cholesterol (mmol/L)
No statistically significant differences in cancer or muscle- or gallbladder-related events

<table>
<thead>
<tr>
<th>Event</th>
<th>Simva n=9077 %</th>
<th>EZ/Simva n=9067 %</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALT and/or AST≥3x ULN</td>
<td>2.3</td>
<td>2.5</td>
<td>0.43</td>
</tr>
<tr>
<td>Cholecystectomy</td>
<td>1.5</td>
<td>1.5</td>
<td>0.96</td>
</tr>
<tr>
<td>Gallbladder-related AEs</td>
<td>3.5</td>
<td>3.1</td>
<td>0.10</td>
</tr>
<tr>
<td>Rhabdomyolysis*</td>
<td>0.2</td>
<td>0.1</td>
<td>0.37</td>
</tr>
<tr>
<td>Myopathy*</td>
<td>0.1</td>
<td>0.2</td>
<td>0.32</td>
</tr>
<tr>
<td>Rhabdo, myopathy, myalgia with CK elevation*</td>
<td>0.6</td>
<td>0.6</td>
<td>0.64</td>
</tr>
<tr>
<td>Cancer* (7-yr KM %)</td>
<td>10.2</td>
<td>10.2</td>
<td>0.57</td>
</tr>
</tbody>
</table>

* Adjudicated by Clinical Events Committee % = n/N for the trial duration
Conclusions

IMPROVE-IT: First trial demonstrating incremental clinical benefit when adding a non-statin agent (ezetimibe) to statin therapy:

- **YES**: *Non-statin* lowering LDL-C with ezetimibe reduces cardiovascular events
- **YES**: Even Lower is Even Better
 (achieved mean LDL-C 53 vs. 70 mg/dL at 1 year)
- **YES**: Confirms ezetimibe safety profile

- **Reaffirms the LDL hypothesis**, that reducing LDL-C prevents cardiovascular events
- **Results could be considered for future guidelines**