A Randomized Multicenter Clinical Trial of Renal Artery Stenting in Preventing Cardiovascular and Renal Events: Results of the CORAL Study

Christopher J. Cooper, M.D., Timothy P. Murphy, M.D., Donald E. Cutlip, M.D., Kenneth Jamerson, M.D., William Henrich, M.D., Diane M. Reid, M.D., David J. Cohen, M.D., M.Sc., Alan H. Matsumoto, M.D., Michael Steffes, M.D., Michael R. Jaff, D.O., Martin R. Prince, M.D., Ph.D., Eldrin F. Lewis, M.D., Katherine R. Tuttle, M.D., Joseph I. Shapiro, M.D., M.P.H., John H. Rundback, M.D., Joseph M. Massaro, Ph.D., Ralph B. D’Agostino, Sr., Ph.D., and Lance D. Dworkin, M.D.,
on behalf of the CORAL Investigators
Disclosures

Funding for the CORAL Trial was provided by:

- The National Heart, Lung and Blood Institute of the National Institutes of Health
- Pfizer
- Cordis

Study drugs provided by:

- Astra Zeneca
- Pfizer
Background

- Atherosclerotic renal artery stenosis is a common problem in the elderly.
- Despite several randomized trials, the utility of revascularization for prevention of major adverse renal and cardiovascular events is controversial.
Methods

- Open label, randomized, international, multicenter controlled clinical trial

- All received Medical Therapy:
 - BP, Diabetes and Lipids to goal, with participants provided free:
 - Candesartan ± hydrochlorothiazide (Atacand ®)
 - Atorvastatin + Amlodipine (Caduet ®)
 - Anti-platelet therapy
Inclusion Criteria

Clinical Syndrome:
- Hypertension ≥2 anti-hypertensive medications, OR
- Renal dysfunction defined as Stage 3 or greater CKD

-AND-

Atherosclerotic Renal Artery Stenosis:
- Angiographic: ≥ 60% and < 100%, OR
- Duplex: systolic velocity of >300 cm/sec, OR
- Core lab approved MRA, OR
- Core lab approved CTA
Primary Endpoint

- Composite of major cardiovascular or renal events:
 - Cardiovascular or Renal Death
 - Stroke
 - Myocardial Infarction
 - Heart Failure Hospitalization
 - Progressive Renal Insufficiency
 - Permanent Renal Replacement Therapy
Primary endpoint analyzed as time to the first primary endpoint event on an intent-to-treat basis.

- 16 participants excluded from a single site where scientific integrity issues of consent and eligibility were noted, and the data was administratively withdrawn.

Sample size selected to provide 90% power to test hypothesis that stenting reduced the incidence of the primary endpoint by 25%.
Screening and Enrollment

Screened Patients (N=5322)

Not Randomized (N=4375)

Randomized (N=947)

Patient Refusal (N=801)
Physician Preference (N=210)
Anatomic Exclusion (N=1866)
Clinical Exclusion (N=628)
Other Reasons (N=870)

Stent Plus Medical Therapy (N=467)
- Received Stent (N=434, 94.6%)
- Not Attempted (N=9, 1.9%)
- False + Non-Invasive Study (N=13, 2.8%)
- Failed Stent (N=3, 0.9%)

Excluded for Scientific Integrity (N=8)

Included in Primary Analysis (N=459)

Medical Therapy Only (N=480)
- Cross Over to Stent before Endpoint (N=12, 2.5%)

Excluded for Scientific Integrity (N=8)

Included in Primary Analysis (N=472)
Baseline Characteristics

- No significant differences in clinical and angiography characteristics
- Approximately 20% global ischemia
- Stenosis severity similar to FDA approval trials 1-3

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Stent + Medical (N = 459)</th>
<th>Medical (N = 472)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>69.3 ± 9.4</td>
<td>69.0 ± 9.0</td>
</tr>
<tr>
<td>Male gender (%)</td>
<td>51.0</td>
<td>48.9</td>
</tr>
<tr>
<td>White race (%)</td>
<td>91.5</td>
<td>90.9</td>
</tr>
<tr>
<td>Black race (%)</td>
<td>7.0</td>
<td>7.0</td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
<td>28.2 ± 5.3</td>
<td>28.7 ± 5.7</td>
</tr>
<tr>
<td>Systolic blood pressure (mmHg)</td>
<td>149 ± 23.2</td>
<td>150.4 ± 23.0</td>
</tr>
<tr>
<td>Estimate GFR (ml/minute)</td>
<td>58.0 ± 23.4</td>
<td>57.4 ± 21.7</td>
</tr>
<tr>
<td>Medical history and risk factors (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetes</td>
<td>32.4</td>
<td>34.3</td>
</tr>
<tr>
<td>Prior myocardial infarction</td>
<td>26.5</td>
<td>30.2</td>
</tr>
<tr>
<td>History of heart failure</td>
<td>12.0</td>
<td>15.1</td>
</tr>
<tr>
<td>Smoking in past year</td>
<td>28.0</td>
<td>32.2</td>
</tr>
<tr>
<td>Angiography</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% stenosis (core lab)</td>
<td>67.3 ± 11.4</td>
<td>66.9 ± 11.9</td>
</tr>
<tr>
<td>% stenosis (investigator)</td>
<td>72.5 ± 14.6</td>
<td>74.3 ± 13.1</td>
</tr>
<tr>
<td>Global ischemia (%)</td>
<td>20.0</td>
<td>16.2</td>
</tr>
<tr>
<td>Bilateral disease (%)</td>
<td>22.0</td>
<td>18.1</td>
</tr>
</tbody>
</table>
Stenosis reduced to: 16±8% (p<0.001)

- Stents per vessel 1.04±0.20
- Embolic protection device, per vessel 124/543 (22.8%)

Procedural Angiographic complications

- Dissection 11/495 (2.2%)
- Branch vessel occlusion 6/495 (1.2%)
- Angiographic distal embolization 6/495 (1.2%)
- Wire perforation 1/495 (0.2%)
- Vessel rupture 1/495 (0.2%)
- Pseudoaneurysm 1/495 (0.2%)
Results: Peri-Procedural Clinical Complications

- No participant required dialysis within 30-days of randomization.
- 1/459 (0.2%) in Stent + Medical Therapy initiated dialysis between 30 and 90-days after randomization.
- 1 stroke resulting in death, day of randomization, Medical Therapy Only group.
Stent + Medical Therapy: 35.1%, 3-years
Medical Therapy: 35.8%, 3-years
HR 0.94 [0.76-1.17], p = 0.58
Results: Secondary Endpoints

CV + Renal Death
- P=ns

Stroke
- P=ns

Myocardial Infarction
- P=ns

Heart Failure
- P=ns

Progressive Renal Insufficiency
- P=ns

Renal Replacement
- P=ns
Results: Subgroups

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>Stent N (%)</th>
<th>Medical Therapy N (%)</th>
<th>Hazard Ratio (95% CI)</th>
<th>P-Value for Interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>161/459 (35)</td>
<td>169/472 (36)</td>
<td>0.94 (0.76, 1.17)</td>
<td>0.09</td>
</tr>
<tr>
<td>Creatinine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 1.6 (mg/dl)</td>
<td>43/84 (51)</td>
<td>34/87 (39)</td>
<td>1.35 (0.86, 2.11)</td>
<td>0.80</td>
</tr>
<tr>
<td>≤ 1.6 (mg/dl)</td>
<td>112/352 (32)</td>
<td>128/367 (35)</td>
<td>0.87 (0.67, 1.12)</td>
<td></td>
</tr>
<tr>
<td>MDRD eGFR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥ 45 (ml/min/1.73 m^2)</td>
<td>91/288 (32)</td>
<td>105/311 (34)</td>
<td>0.93 (0.70, 1.23)</td>
<td>0.17</td>
</tr>
<tr>
<td>< 45 (ml/min/1.73 m^2)</td>
<td>64/148 (43)</td>
<td>57/143 (40)</td>
<td>0.98 (0.68, 1.40)</td>
<td></td>
</tr>
<tr>
<td>Diabetes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>69/148 (47)</td>
<td>66/162 (41)</td>
<td>1.15 (0.82, 1.61)</td>
<td>0.64</td>
</tr>
<tr>
<td>No</td>
<td>92/309 (30)</td>
<td>103/310 (33)</td>
<td>0.84 (0.64, 1.12)</td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>75/234 (32)</td>
<td>78/231 (34)</td>
<td>0.89 (0.65, 1.22)</td>
<td>0.32</td>
</tr>
<tr>
<td>Female</td>
<td>86/225 (38)</td>
<td>91/241 (38)</td>
<td>0.99 (0.74, 1.33)</td>
<td></td>
</tr>
<tr>
<td>Global Ischemia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>39/89 (44)</td>
<td>20/51 (39)</td>
<td>1.07 (0.62, 1.83)</td>
<td>0.62</td>
</tr>
<tr>
<td>No</td>
<td>119/356 (33)</td>
<td>106/264 (39)</td>
<td>0.78 (0.60, 1.01)</td>
<td></td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>African American</td>
<td>11/29 (33)</td>
<td>10/30 (33)</td>
<td>1.01 (0.42, 2.43)</td>
<td>0.55</td>
</tr>
<tr>
<td>Other</td>
<td>126/356 (35)</td>
<td>136/357 (38)</td>
<td>0.88 (0.69, 1.13)</td>
<td></td>
</tr>
<tr>
<td>Baseline SBP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 160 (mmHg)</td>
<td>66/148 (45)</td>
<td>58/139 (42)</td>
<td>1.02 (0.71, 1.45)</td>
<td></td>
</tr>
<tr>
<td>≤ 160 (mmHg)</td>
<td>95/309 (31)</td>
<td>108/328 (33)</td>
<td>0.90 (0.68, 1.18)</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 70 (years)</td>
<td>91/226 (40)</td>
<td>94/220 (43)</td>
<td>0.87 (0.65, 1.16)</td>
<td>0.56</td>
</tr>
<tr>
<td>≤ 70 (years)</td>
<td>70/233 (30)</td>
<td>75/252 (30)</td>
<td>1.00 (0.72, 1.39)</td>
<td></td>
</tr>
<tr>
<td>US Sites</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>137/385 (36)</td>
<td>146/387 (38)</td>
<td>0.90 (0.71, 1.14)</td>
<td>0.38</td>
</tr>
<tr>
<td>No</td>
<td>27/74(32)</td>
<td>23/85(27)</td>
<td>1.22 (0.69, 2.16)</td>
<td></td>
</tr>
<tr>
<td>Site Reported Max Stenosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 80%</td>
<td>77/198 (39)</td>
<td>64/166 (39)</td>
<td>0.93 (0.67, 1.30)</td>
<td>0.66</td>
</tr>
<tr>
<td>≤ 80%</td>
<td>77/231 (33)</td>
<td>79/208 (38)</td>
<td>0.84 (0.61, 1.14)</td>
<td></td>
</tr>
</tbody>
</table>
Results: Systolic Blood Pressure

P = 0.03
Conclusion

- Renal artery stenting did not confer a benefit to the prevention of clinical events when added to comprehensive, multi-factorial medical therapy in people with atherosclerotic renal artery stenosis and hypertension or chronic kidney disease.

Now available at: www.NEJM.org
Acknowledgements