Fuel the Failing Heart: glucose or fatty acids?

Rong Tian, MD, PhD
Mitochondria and Metabolism Center
University of Washington, Seattle
Metabolic Remodeling:

Fatty Acids ↓

PCr/ATP ↓

Carbohydrates ↑
Glucose vs. fatty acids:

Glucose:
- O2 efficient substrate, 11% saving in P:O
- C inefficient, 2/3 carbon enters TCA
- availability to the cardiac myocyte is subjected to insulin regulation

Fatty acids:
- O2 inefficient substrate, requires 11% or more O2 than glucose
- high availability and C efficient, every carbon is oxidized
- FAO is dependent on mitochondrial function
- reactive lipid species
Shifting Substrate Preference to Glucose by overexpressing GLUT1

2-deoxyglucose-phosphate (mM)

WT TG

2-deoxyglucose uptake rate (mM/min)

basal insulin-stimulated

WT TG

% Oxidation

FS%

WT TG

Survival at 90 weeks

Survival (%)
Overexpressing GLUT1 delays the transition to failure and Improves Long-term Survival Post Ascending Aortic Constriction
Glucose is not toxic.
A greater than endogenous capacity for glucose utilization is needed to compensate for impaired FAO in the adult heart.

\[
\text{PPARα}^{-/-} \text{ mice} \quad \text{whole body knockout} \quad \times \quad \text{GLUT1}^{\text{TG}} \text{ mice} \quad \text{cardiac specific}
\]

\[
\text{PPARα}^{-/-} \text{ GLUT1}^{\text{TG}}
\]
Contributions of glucose vs. fatty acids to the oxidative metabolism

Baseline
High workload
Rate Pressure Product (10³ mmHg/min)

- **WT**
- **PPARα⁻/⁻**
- **PPARα⁻/⁻-GLUT1**
- **GLUT1**

Graph showing the comparison of Rate Pressure Product under different conditions of glucose and mixed substrates. The high workload is indicated to last 25 minutes.
[ATP] (mM)

- WT
- PPARα^−/−
- PPARα^−/−GLUT1
- GLUT1

high workload 25 min.
Maladaptive:
Limited capacity for ATP synthesis

Further facilitates glucose utilization (GLUT1-TG)

Normalized FAO?

↑ use of glucose and ↓ use of fatty acids

Adaptive:
↓ O₂ demand
Strategies:

• Enhance FAO via the PPARα mechanisms
 – Cardiac PPARα-TG: cardiomyopathy
 – Pharmacological activation: worse or no effects on cardiac function in hypertrophied heart

• High fat diet
 – Delays the development of heart failure in certain models while worsens the outcome in others

FA uptake >> FAO

• Mitochondrial FAO
 – Manipulate long-chain fatty acid entry
Targeting Acetyl-CoA Carboxylase (ACC2) to Specifically Increase FAO

Fatty Acids → Lipid synthesis → MCD → Acetyl CoA

Lipid synthesis

Acetyl CoA → MCD → Acetyl CoA

Acetyl CoA

Malonyl CoA → ACC1 → ACC2

Malonyl CoA

ACC1

ACC2

ACS

CPT1

β-oxidation → TCA

Mitochondrion
Cardiac-specific deletion of ACC2 decreases Malonyl-CoA level

ACC2

CON ACC2H-/-

Heart

Gastroc

Liver

ACC1 mRNA

Fold Change (from Control)

C57 f/WT f/f -/+ -/-

CON

ACC2H-/-

0.0

0.5

1.0

1.5

2.0

2.5

Malonyl CoA

nмол/г dry weight

CON ACC2H-/-

0.0

0.5

1.0

1.5

2.0

2.5

*
Effects of ACC2 Deletion on Cardiac Metabolism

% Oxidation

Relative Contribution to Acetyl-CoA (%)

TAG Content

Glycogen Content

MVO₂

MVO₂/RPP

Gene Expression

Acylcarnitines

Fold Change (Relative to Control)

Glc+pyr mixed substrate

CON

ACC2H⁻/⁻
High Workload Challenge in Isolated Perfused Heart

Cardiac Function

- **LVDevP (mmHg)**
 - CON
 - ACC2H⁻/⁻

- **Heart Rate (bpm)**
 - CON
 - ACC2H⁻/⁻

Diastolic Function

- **EDP (mmHg)**
 - CON
 - ACC2H⁻/⁻

Inorganic Phosphate

- **Baseline**
- **High Workload**

Phosphocreatine

- **Baseline**
- **High Workload**

ATP

- **Baseline**
- **High Workload**

PI (mM)

- **Baseline**
- **High Workload**

* and ** indicate statistical significance.
Aging: Fatty acid metabolism is maintained with normal function and morphology up to 12 months of age.

Substrate Utilization

- **Contribution to Acetyl-CoA (%):**
 - CON
 - ACC2H⁻/⁻

In-vivo Function

- **Fractional Shortening (%):**
 - CON
 - ACC2H⁻/⁻

Wall Thickness

- **LVPW;d (mm):**
 - CON
 - ACC2H⁻/⁻
Pressure Overload: TAC

% Contribution to Acetyl-CoA

<table>
<thead>
<tr>
<th></th>
<th>Sham</th>
<th>TAC</th>
<th>Sham</th>
<th>TAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>CON</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACC2H/-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Glucose, Fatty Acids, Other

<table>
<thead>
<tr>
<th></th>
<th>Sham</th>
<th>TAC</th>
<th>Sham</th>
<th>TAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>CON</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACC2H/-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CON ACC2H/-

PCr/ATP

<table>
<thead>
<tr>
<th></th>
<th>Sham</th>
<th>TAC</th>
<th>Sham</th>
<th>TAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>CON</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACC2H/-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 Function

<table>
<thead>
<tr>
<th></th>
<th>Sham</th>
<th>TAC</th>
<th>Sham</th>
<th>TAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>BL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4wk</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8wk</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FS (%)

<table>
<thead>
<tr>
<th></th>
<th>Sham</th>
<th>TAC</th>
<th>Sham</th>
<th>TAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>CON</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACC2H/-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PCr/ATP

<table>
<thead>
<tr>
<th></th>
<th>Sham</th>
<th>TAC</th>
<th>Sham</th>
<th>TAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>CON</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACC2H/-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PCR/ATP↓

Carbohydrates ↑

Fatty Acids ↓

Alanine

<table>
<thead>
<tr>
<th></th>
<th>Sham</th>
<th>TAC</th>
<th>Sham</th>
<th>TAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>CON</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACC2H/-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ANAPLEROISIS

<table>
<thead>
<tr>
<th></th>
<th>Sham</th>
<th>TAC</th>
<th>Sham</th>
<th>TAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>CON</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACC2H/-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

13C3-Alanine/13C1-Glucose (AU)

<table>
<thead>
<tr>
<th></th>
<th>Sham</th>
<th>TAC</th>
<th>Sham</th>
<th>TAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>CON</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACC2H/-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lactate

<table>
<thead>
<tr>
<th></th>
<th>Sham</th>
<th>TAC</th>
<th>Sham</th>
<th>TAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>CON</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACC2H/-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

13C-C3Lactate/13C-C1Glucose (AU)

<table>
<thead>
<tr>
<th></th>
<th>Sham</th>
<th>TAC</th>
<th>Sham</th>
<th>TAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>CON</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACC2H/-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CON ACC2H/-

PCr/ATP

<table>
<thead>
<tr>
<th></th>
<th>Sham</th>
<th>TAC</th>
<th>Sham</th>
<th>TAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>CON</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACC2H/-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PCr/ATP↓

Carbohydrates ↑

Fatty Acids ↓
Reduced Hypertrophy and Fibrosis in ACC2H-/- 4 weeks Post-TAC

![Graphs and images showing reduced hypertrophy and fibrosis in ACC2H-/- mice 4 weeks post-TAC.]
Optimal energy metabolism

Capacity:

to meet the high energy demand

Balance:

uptake = utilization

Flexibility:

able to utilize what is available

No “one-size-fit-all” substrate for the heart
Acknowledgement

Ivan Luptak
Jie Yan
Stephen Kolwicz Jr.
Lorena Garcia-Menendez
Miranda Nabben
Mei Shen
Jessica D’Agostino
Francesco Aiello
Yanqiu Xing
Liqun Zou
Bo Løfgren
Biao Lei
Georgios Karamanlidis
Danos Christodoulou
Maengjo Kim
Queena Yu
Yu-Ying Yang
Sung Won Choi

Rick M. Mortensen

University of Michigan

Dan Kelly

Washington University, St. Louis

Gary Lopashchuk

University of Alberta

Ronglih Liao
Joanne Ingwall
Jim Balschi

Luigino Nascimben
Jun Yoshioka, Richard Lee

Brigham and Women’s Hospital

David Olson

Beth Israel Deaconess Med Center

Robert Synovec

University of Washington